※上記の広告は60日以上更新のないWIKIに表示されています。更新することで広告が下部へ移動します。


Problem 72 「分数の数え上げ」 †

nとdを正の整数として, 分数 n/d を考えよう. n<d かつ HCF(n,d)=1 のとき, 真既約分数と呼ぶ.

d ≤ 8について真既約分数を大きさ順に並べると, 以下を得る:

1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8
この集合は21個の要素をもつことが分かる.

d ≤ 1,000,000について, 真既約分数の集合は何個の要素を持つか?


解法
オイラーのファイ関数をエラトステネスの篩風味に実装してみました。
今回はC++です。



#include<stdio.h>
#include<iostream>

const int LIMIT=1000*1000;
__int64 memo[LIMIT+1];


int main(){
	__int64 ans=0;
	for(int i=2;i<=LIMIT;i++){
		memo[i]=i;
	}
	for(int i=2;i<=LIMIT;i++){
		if(memo[i]!=i)continue;
		for(int j=1;j*i<=LIMIT;j++){
			memo[i*j]=(memo[i*j]/i)*(i-1);
		}
 	}
	for(int i=2;i<=LIMIT;i++){
		ans+=memo[i];
	}
	std::cout<<ans<<"\n";
}